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Abstract —An MMIC frequency converter with an RF bandwidth of

8-15 GHz and an IF handwidth of 1.5 GHz has been designed mtd built.

The MMIC chip has 15 dB conversion gain and inclludes a two-stage RF

amplifier, a two-stage LO buffer amplifier, a double-balanced mixer, and a

three-stage IF amplifier. Tfds high level of integral ion is realized on a

small — 48 X 96 mil — area, resnking in good RF yields. The circuit employs

a push-pull configuration to eliminate the need for via holes (low-induc-

tance grounds) and facilitate a compact layout.

I. INTRODUCTION

M ICROWAVE FREQUENCY conwwters are widely

used in commercial and military communication

systems. At present, these are primarily hybrid MIC sub-

systems that integrate RF amplifiers, mixers, and IF

amplifiers. Each of these components has to be built,

tested, and tuned separately and then interconnected using

short cable lengths or microstrip lines. The cost of the

individual components as well as the additional tuning

necessary to reduce the effect of interconnection mis-

matches makes this an expensive system. The size and the

weight of such a product are substantial. MMIC con-

verters, therefore, provide great advantages of cost, size,

weight, and reliability over their MIC counterparts. How-

ever, few broad-band MMIC converters have been built to

date because of the difficulties involved in realiz-

ing broad-band amplifiers and mixers at KU-band fre-

quencies and combining them with IF amplifiers within a

single chip of reasonable size. A previously reported MMIC

frequency converter [1] showed excellent performance

across the 3.7–4.2 GHz band. The novel transformer-

coupled circuits used resulted in high levels of integration

and compact size. At higher frequencies, it is harder to

realize such complex subsystems on a chip due to difficul-

ties in modeling interactions between the various compo-

nents of the system, grounding problems, and parasitic

effects.

Our work, reported in this paper, shows that broad-band
lossy match amplifiers using lumped-elelment matching

networks, and transformer-coupled diode mixers operating

at KU-band frequencies can be integrated, along with IF

amplifiers, to obtain a complete high-performance receiver

IC. This K.-band down-converter has one of the highest
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levels c~f integration reported to date in high-frequency

analog MMIC’S. It incorporates 20 FET’s, 35 spiral induc-

tors, 40 resistors, and 26 MIM capacitors on a single chip.

H. MMIC FREQUENCY CONVERTER

CIRCUIT DESCRIPTION

The cell library approach, reported earlier [2], was used

in developing tlhis subsystem MMIC. In this approach,

each component required for a system is first developed

and full y characterized individually. Then these different

cells are integrated within a single MMIC. The individual

cells are designed to have low input and output VSWR to

minimize unpredictable interactions between different cells.

If this is not possible, at least one of the interconnecting

cells is designed to have low VSWR so that the overall

performance can be predicted easily. Because of the

extreme] y short interconnection lengths involved, the

resultant parasitic and VSWR degradation are kept to a

minimum, resulting in a predictable, high-performance IC.

Fig. 1 is the block diagram of the fully integrated

receiver chip. The chip consists of a two-stage, broad-band

RF amplifier, a two-stage LO buffer amplifier, a double-

balanced mixer, and a three-stage IF amplifier. In ad-

dition, all the matching, biasing, blocking and bypass

circuits are included on the chip. The amplifiers compen-

sate for Ilhe mixer conversion loss, provide buffering to the

mixer, and increase the isolation from port to port.

In the following paragraphs we shall describe the

technical approach used in designing the converter and the

individual circuits (cells) that form the building blocks of

the IC. Measured results for these individual cells, as well

as the cc}mplete converter, will also be presented. Finally,

the main factors that affect the performance of the

converter will be summarized.

111. PUSH–PULL APPROACH

The push-pull circuit technique has been used exten-

sively for low-frequency amplifiers. Recently, its use at

microwave frequencies has been successfully demonstrated

[3], [4]. In this chip, the push-pull configuration has been

used throughout in the design of the individual component

cells, for several reasons. One of the features of the

push–pull technique is the presence of a virtual ground

between the push-pull amplifiers. This eliminates the need

for critical RF grounding by means of via holes and allows
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Fig, 1, Block diagram of MMIC down-converter.
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Fig. 2. Functional schematic of RF amplifier.

close packing of the various components. The yield is also

increased since via holes are no longer necessary during

wafer processing and the foundry process is less complex.

These factors are of special significance for complex

subsystem IC’S where the large chip size tends to reduce

the yield.

Even though push-pull circuits tend to be larger and

more complex and require baluns at the input and output,

they are capable of higher output power and can directly

drive balanced loads (for example, a diode quad mixer).

Also, in a complex subsystem composed of many balanced

circuits, the internal connections within the system can be

made directly and baluns are required only at the input

and output ports.

IV. RF AMPLIFIER DESIGN

Fig. 2 is the functional schematic of the RF amplifier.

The RF amplifier is a two-stage, push–pull circuit design-

ed to operate over the 8–16 GHz band. The lossy match

technique for broad-band amplifiers [5], [6], is used to

obtain flat gain response over the octave bandwidth, along

with low input and output VSWR. Only lumped elements

are used in the matching networks, so that the circuit size

is minimized. Computer modeling programs have been

used to design the spiral inductors. The amplifier was

limited to two stages to minimize dc power consumption.
Fig. 3 shows the FET model used in the design of the

amplifier. The amplifier response was simulated using

TouchstoneTM. The spiral inductors were modeled as

lumped elements with parasitic resistors and capacitors

added. The computer programs that were used to design

the spiral inductors also calculate the series parasitic resis-

tance associated with the inductor, and these are included

in the model during circuit simulation. A typical inductor

value is 1.5 nH with a series resistance of 5 0. This series

resistance varies with frequency and the variation is ac-

counted for during RF simulation. The parasitic capaci-

tances were derived from measured data. These models
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Fig. 3. FET model used in RF amplifier design.
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Fig. 4. Gain response of RF amplifier.

have been used extensively and they have predicted the RF

performance with good accuracy. Fig. 4 shows the simulat-

ed and measured gain responses of the RF amplifier. The

close agreement between the two confirms the validity of

the active and passive element models used. The RF

amplifier provides 8 + 1 dB gain over the 8–16 GHz band

while drawing 40 mA from an 8-V supply. The input and

output VSWRS are less than 2:1.

The LO buffer amplifier is similar in design and is

capable of delivering the required 13 dBm drive power for

the mixer. It also uses an 8-V supply and draws 50 mA.

V. DOUBLE-BALANCED MIXER AND

IF AMPLIFIER DESIGN

The successful implementation of an MMIC converter

requires the design of a wide-band mixer, with low

conversion loss, that can be realized in a small-size mono-

lithic form. The mixer used here is a planar version of the

double-balanced, transformer-coupled, diode mixer widely

used at lower frequencies; its schematic is shown in Fig. 5.

It occupies very little area, and consumes no power since it

is a passive circuit. Planar transformers are used to couple

signals into a diode quad, The diode quad consists of four

l-pm GaAs interdigitated diodes, with a periphery of 72

pm each. These are N + diodes, and therefore have low

series parasitic resistance. The spiral transformers consist

of closely coupled planar spiral inductors. The inductance
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Fig. 7. Measured IF response of monolidric diode mixer.

of these coils and their coupling factor are computed using

a bifilar version of the inductor modelin,g program that

was used for the spiral inductors. While the coupling

factors for planar spiral inductors are considerably less

than unity, the results obtained herein prove they are

sufficient for reasonably broad bandwidths. Fig. 6 shows

the RF response of this mixer measured separately. The

roll-off at low frequencies is caused by the short-circuiting

effect of the spiral transformer, wherea~ the high-end

roll-off can be attributed to increasing losses in the high-

impedance lines. Fig. 7 shows the measured. IF response of

the mixer. The increased conversion loss for frequencies

beyond 1 GHz is caused by the self-inductance of the

transformer windings and the low coupling factor between

the secondary turns.

Fig. 8. Photograph of MMIC down-converter chip.
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Fig. 9. Conversion gain versus RF frequency.

The IF amplifier uses two common source stages and

one source follower stage to deliver approximately 15 dB

of gain (over the 0.1 –2 GHz band. The two common source

stages provide the gain, and the source follower stage is

used to obtain a good output match. It is also a compact

push-pull amplifier designed for easy integration with the

mixer, occupying only a 24X 24 mil area. Fig. 8 is a

photograph of the complete converter chip.

VI. RF PERFORMANCE

RF measurernents were performed on the MMIC

converter with baluns at the RF and LO ports. These were

quarter-wavelength coplanar MIC baluns that cover over

an octave bandwidth. Even’ though the IF output was also

push–pull, one of the ports was terminated for ease of

measurement, and single-ended data were recorded.’ For

determining the RF response of the converter, an IF

frequency of 1 GHz was chosen, and the LO frequency

adjusted suitably as the RF input was varied from 7 to 15

GHz. The resultant conversion gain is plotted in Fig. 9.

The gair~ varies from 12 to 16 dB in the 8-15 GHz band,

with a peak conversion gain of 16 dB at 12 GHz. The LO

power applied was less than 8 dBm in all cases, while the

RF level. was maintained at – 20 dBm. Even though the
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Fig. 12. Return loss and isolation.

RF amplifier gain was about 2 dB less than the simulation,

the IF amplifier gain was about 3 dB higher than predic-

ted, so that the overall conversion gain was very close to

the predicted value of 15 dB at midband. The IF response

of the converter is plotted in Fig. 10, with the LO frequency

held constant at 12 GHz. The IF response indicates an IF

bandwidth of 1.5 GHz for a conversion-gain flatness within

~ 2 dB. The overall response of the converter is determined

by the individual responses of the mixer and the RF and

IF amplifiers. It should be noted that the mixer limits both

the RF and the IF bandwidths, whereas the RF and IF

amplifiers only affect their respective bandwidths. The use

of a distributed amplifier as well as a transf~rmerless

mixer can result in extremly broad-band converters.

Fig. 11 is a graph of the conversion gain as a function of

the IF output power. The l-dB compression point for the

converter is approximately 10 dBm. The return loss and

isolation measured on the chip are plotted in Fig. 12. The
VSWR at the RF and LO ports is less than 2:1. Use of the

double-balanced mixer and buffer amplifiers also results in

over 40 dB isolation from port to port. Fig. 13 is a

photograph of the MMIC chip assembled in a housing

along with thin-film MIC support circuitry. The typical

conversion gain of the assembled system is plotted in Fig.

14. The conversion gain is approximately 15 dB in the
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Fig. 14. Typical response of MMIC converter assembled in housing.

11 –13 GHz band, and closely matches the chip in

performance. The yield across the wafer for this converter

IC was over 60 percent, and the yield from wafer to wafer

did not vary much for the several wafers that were tested.

VII. CONCLUSIONS

It has been demonstrated that, using a cell-library ap-

proach, a high level of integration is possible in GaAs

MMIC’S. Several analog functions can be combined on a
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single chip to build high-performance subsystem IC’S at

low cost. An 8:15 GHz GaAs monolithic frequency

converter IC has been developed which exhibits repeatable

and predictable performance with high yield.
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